After studying DC permanent magnet motors I'm looking into making my own motor. One way to do that is to combine permanent magnets with electromagnets. So I'm starting this page to look into both type of magnet.
When talking about magnetic field strength, it's helpful to compare to the Earth's field, see my sensors page for more on that.
If you wanted to make a 1 horse power DC permanent magnet motor for a bicycle what would be required?
Answer:
HP = 32572 Foot pounds of force per minute. (see Wiki for HP)
A bicycle going at different speeds will have some revolutions per minute. Assume rolling radius of tire is 13" (26" road tire), Circumference of tire is 81.7" or 6.8'.
Speed Miles per Hour
10
20
30
Linear Speed Feet/min
=5280 ft/mi / 60 min/hr * Mi/hr
880
1760 2640 Rotational speed RPM
= Linear speed/6.8'
129
259
388
Pounds of force needed at 1 foot radius for 1 H.P.
=32572 / RPM
252
125
83
Force needed on one face of permanent magnet
Pounds of force needed along circumference / 4
63
31
21
If the permanent magnets are arranged around the rear wheel so that the polarity alternates (N, S, N, S, ...) Then an electromagnet can be attracting one pm while repelling another thus doubling the force. In a like manner if the electromagnet in wound on an inverted "U" shape then each end of the pm will be either attracted or repelled thus cutting the force needed in half again.
The Rare Earth magnets (Wiki) are currently the strongest yet economically practical so that's what I'm going to be looking at. The Neodymium (Wiki) is the one most commonly used.
One source for these is K&J Magnetics, they have a calculators that will tell you about Pull Force, Repelling Force, Magnetic Field, Plate Thickness & Field in a gap with or without a yoke.
There are Wiki pages for: Magnetic Force, Ampère's force law, Magnetic Constant (Vacuum permeability µ0),
Note: I would expect that the magnetic field between a couple of magnets (wither pm or em) would increase if a yoke connected the back of each. This becomes more and more important as the gap approaches zero length.
Older permanent magnets needed to be long and skinny in order to have strength. You could think of a short and fat magnet as made up of a bunch of long skinny magnets tied into a bundle. But the modern rare Earth magnets can be very strong even though they are short, like a coin with the poles as the heats and tails.
One of the first uses for electromagnets was for telegraphy and self winding clocks (1 & 2), doorbells, phone ringers, etc.. In these applications two side by side electromagnets had their cores connected together by an iron strap leaving two pole pieces exposed to attract an armature. These typically had soft iron cores, it was only later that Silicon steel laminations were used to reduce losses.
The key equation is B = u0 * k * I * (N/L)
B = field (Tesla)
u0 = 4π×10−7 (N·A−2)
I = Current (Amps)
N/L = Turns per meter.
The N/L term may assume a single layer coil construction rather than a multiple layer coil. That's because the first layer encloses some area, but the next layer encloses a larger area and so on for more layers where each successive layer generates a weaker and weaker field.
Using a smaller wire diameter makes for a stronger field (N/L) increases, but smaller wires can carry less current. The total length of wire and so the voltage drop across the coil (and the power dissipated in the coil) are related to the diameter of the coil, so a smaller diameter is desirable, i.e. only as big as needed.
Tattoo Machine
While looking for low cost electromagnets I came across Tattoo Machine Coils on eBay. The are labeled by the number of "Wraps", which is Tattoo speak for what I'd call layers. I ordered 8, 10 and 12 Wrap coils. Sold in pairs with a capacitor for under $4 per pair, or under $2 per electromagnet.
Note that the capacitor is covered with black shrink tube so if using the pair be sure to note polarity by means of the dimple (see: Fig 2 and Fig 3).
Wraps
Ohms
(2 Coils)
Guess
Ft of Wire per coil1
8
2.7
53
10
3.7
73
12
4.0
Note 1: Resistance divided by 0.02567 mΩ/ft (from wire table) divided by 2 for one coil.
12 Wrap Coil smaller than the 8 & 10 wrap coils.
Metal Core: not removable. 9mm OD, Length 31.0 mm, Mounting Thread: TBD4x0.7mm,
Plastic Coil form: Flanges: 19 mm O.D., Height: 25mm, Winding height: 225mm8 Wrap & 10 Wrap Dimensions:
Metal Core: 7.8mm OD, Length 32.0 mm, Mounting Thread: 4x0.7mm, no groove for a circlip ( Wiki)
Plastic Coil form: Flanges: 18.5 mm O.D., Height: 27mm, Winding height: 25.75mm, Core hole: 8mm I.D. (too small for the 8.6 mm Tefenol-D rods)
Coil: Typically wound with 24 AWG enamel wire (Wiki):AWG Wire Table
Diameter Turns of wire, without insulation Area Copper wire Resistance/length[7] Ampacity,[8] at 20 °C insulation material temperature rating,
or for single unbundled wires in equipment for 16 AWG and smaller[9]Fusing current[10][11] 60 °C 75 °C 90 °C Preece[12][13][14][15] Onderdonk[16][15] (in) (mm) (per in) (per cm) (kcmil) (mm2) (mΩ/m[a]) (mΩ/ft[b]) (A) ~10 s 1 s 32 ms 24 0.0201 0.511 49.7 19.6 0.404 0.205 84.22 25.67 3.5 2.1 - 29 A 62 A 348 A
Tattoo Coil Photos
I also ordered on eBay "Complete Tattoo Machine Kit - 2 Gun Skull Set" for $12 w/free shipping. It came in a 1 cubic foot box with a bunch of stuff! Way lower cost than buying parts separately.
In addition ordered "Digital Dual Machine Tattoo Power Supply LCD Display W Clip Cord &ft Switch P025" which is a tattoo power supply that displays Voltage, Frequency and Duty Cycle, but not current (see Fig 4 below). about $40.
Tattoo Machine Kit Photos
There are a large number of methods of measuring magnetic field strength. There are AC and DC methods, but only DC measurements will work for permanent magnets and a static Earth measurement.
The measurement sensors may have an offset that needs to be adjusted and that may require a zero field test chamber. See: Sensors
It's possible to use a rotating coil or moving a PM through a coil to measure it using a Fluxmeter.
Unfortunately the situation with magnetic units is similar to RS-232 serial communications where there is an agreement to not have a standard.
It appears the same agreement has been made when it comes to magnetic units, everyone chooses a unit that they like. For example here are some conversions:
1 Oersted (Wiki) = 79.58 Ampere-Turns/Meter
1 nano Tesla (Wiki)= 10 micro Oe = 1 Gamma
1 Tesla = 10,000 Gauss
1 Maxwell (Wiki) = 1 gauss × cm2 = 10−8 Weber (Wiki)
Walker Scientific Inc. MG-3D Gaussmeter (93F Hall Effect probe)
Helmholtz CoilThe MG-3D is a digital display instrument with five full scale ranges from 10 gauss to 100,000 gauss for AC or DC fields, displayed on a ±0.05% 3-1/2 digit bipolar DPM offering ±0.1% resolution.
Range
5 Full scale; 10, 100, 1K, 10K, 100K with 100% over-rangeDisplay
TYPE-Digital; ±0.05% plus 1 digit 3 1/2 digit bipolar DPMRANGE-0.01 to 199.9
NORMAL MODE - For measurement of DC (steady state) fields only.
RMS MODE - Meter displays the RMS value of the measured field (AC and DC components). Accuracy is ±1% for measurement of fields from 3Hz to 10Hz, ±0.3% 10Hz to 400Hz within frequency response stated.
PEAK READING OPTION - ±0.1% of full-scale range within stated frequency response
Analog Output
ANALOG VOLTAGE - ±1 volt full-scale Overrange capability to ±10 volts without loss of accuracy. Output is proportional to the measured field.ACCURACY - ±0.1% or 10 milligauss, whichever is greater
FREQUENCY RESPONSE - DC to 400 Hz (3 dB down at 400Hz)
OUTPUT IMPEDANCE -100 ohms
LOAD IMPEDANCE - Minimum of 2,000 ohms; short circuit protected
Power Input
STANDARD - 115V 50Hz to 400Hz
Approximately 6 Watts; .06 amps @ 105V to 125V or .03 amps @ 210V to 250V - 50Hz to 400Hz
Sensitive Research Instrument Co. Fluxmeter
Annis M25 Pocket Magnetometer
HP 428 Clip-on Milli-ammeter - with both clip-on probes and a magnetometer
AlphaLab DC Gaussmeter Model 1
AMY6 Magnetic Polarity Tester
GE Gauss Meter & Reference Magnet
Sensors - Magnetic - Helmholtz Coil
Telegraph
Telephone - Telephone patents
Electromagnetic devices:
Build it YOURSELF!, a REAL ELECTRIC MOTORMagnets - this web page
Electromagnetic Toy Engine
Gilbert DC 3-pole Electro-magnetic Machine
Leclanché Battery - wet cell
MESCO 1011 Toy Engine
No. 6 Dry Cell -
Toy Motor Kit & modern version as well as Science First demonstration motor -
Vibrators -
Weeden DC 2-pole Electro-magnetic Machine - really a generator
Magnatometers
Sonobuoys & CRT-1 Sonobuoy
DC Permenant Magnet Motors
Walker Scientific MG-3D Gaussmeter
Wireless Driveway Monitor - solar magnetometer
YouTube:
Magnets | How It's Made, 5:08 -
Back to Brooke's: PRC68, alphanumeric index, Products for Sale
page created 23 Sep 2013